Ch 34: Control of Body Fluid Osmolality and Volume
Ch 2 : Homeostasis of Body Fluids

Fluid and Electrolyte Balance

Myoung Kyu Park MD. PhD.
Department of Physiology
Sungkyunkwan University School of Medicine
Fluid and Electrolyte Balance

1. Distribution and measurement of body fluid compartments
2. Compartmental fluid balance and compositions
3. Systemic fluid balance: water intake & output
4. Regulation mechanism of extracellular fluid volume
5. Electrolytes balance
Body Fluid

Young men

60% of body weight

cf. water content; fat tissue (10%), other tissues (70-75%)

Young Women

50% of body weight
Body Fluid Compartments

70 kg man

Intracellular fluid (ICF)
- 40%, 28L

Extracellular Fluid (ECF)
- 15%
 - 10.5L (ISF)
- 5%
 - 3.5L (Plasma)
- 1-3%
 - transcellular fluid

Total Body Water (42L)
- 60%
Measurement of body fluid compartments

\[V = \frac{\text{amount}}{\text{concentration}} \]

<table>
<thead>
<tr>
<th>Substance</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBW</td>
<td>Tritiated water and D(_2)O</td>
</tr>
<tr>
<td>ECF</td>
<td>sulfate, inulin, manitol</td>
</tr>
<tr>
<td>Plasma</td>
<td>radioiodinated serum albumin, Evans blue</td>
</tr>
<tr>
<td>Interstitial</td>
<td>ECF vol – plasma vol</td>
</tr>
<tr>
<td>ICF</td>
<td>TBW – ECF vol</td>
</tr>
</tbody>
</table>
Electrolyte Composition of the Body Fluids

1. Key ions determine fluid volumes
2. Osmolarity determines fluid volumes

<table>
<thead>
<tr>
<th>Electrolytes</th>
<th>(1) Plasma (mEq/L)</th>
<th>(2) Plasma Water (mEq/kg H₂O)</th>
<th>(3) Interstitial Fluid (mEq/kg H₂O)</th>
<th>(4) Intracellular Fluid (Skeletal Muscle) (mEq/kg H₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na⁺</td>
<td>142</td>
<td>153</td>
<td>145</td>
<td>10</td>
</tr>
<tr>
<td>K⁺</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>159</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>5</td>
<td>5.4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>2</td>
<td>2.2</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>153</td>
<td>165</td>
<td>154</td>
<td>210</td>
</tr>
<tr>
<td>Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl⁻</td>
<td>103</td>
<td>111</td>
<td>117</td>
<td>3</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>25</td>
<td>27</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>Protein</td>
<td>17</td>
<td>18</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Others</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>155</td>
</tr>
<tr>
<td>Total</td>
<td>153</td>
<td>165</td>
<td>154</td>
<td>210</td>
</tr>
</tbody>
</table>

Electrolyte composition between ICF and ECF is different, but the osmolarity is the same

\[\text{Osm}_{\text{ECF}} = \text{Osm}_{\text{ICF}} \]
Osmotic Pressure determines Cell Volumes (ICF)

<table>
<thead>
<tr>
<th>Solution</th>
<th>glucose(g/dL)</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>Ca²⁺(mEq/L)</th>
<th>Cl⁻</th>
<th>lactate</th>
<th>osmolarity(mOsm/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% dextrose</td>
<td>5.0</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>Isotonic (278)</td>
</tr>
<tr>
<td>10% dextrose</td>
<td>10.0</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>hypertonic (556)</td>
</tr>
<tr>
<td>5% dextrose in 0.9% saline half strength saline(0.45%)</td>
<td>−</td>
<td>77</td>
<td>−</td>
<td>−</td>
<td>77</td>
<td>−</td>
<td>hypotonic (154)</td>
</tr>
<tr>
<td>normal saline (0.9%)</td>
<td>−</td>
<td>154</td>
<td>−</td>
<td>−</td>
<td>154</td>
<td>−</td>
<td>isotonic (308)</td>
</tr>
<tr>
<td>Lactated Ringer's solution</td>
<td>−</td>
<td>130</td>
<td>4</td>
<td>3</td>
<td>109</td>
<td>28</td>
<td>isotonic (274)</td>
</tr>
</tbody>
</table>
Importance of ECF volume

ISF is a diffusion medium between plasma and ICF.

Maintenance of ECF volume is essential for the adequacy of the circulation.

ECF volume is determined by mainly Na⁺ concentration

\[\text{[Na}^+\text{]} \rightarrow \text{ECF vol.} \]

cf. cell memb. permeability
Evolutionary changes

sponges

ejellyfish

earthworm
Cariovascular system

separated from ECF

<table>
<thead>
<tr>
<th>Pump</th>
<th>Tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Radiation Symbol]</td>
<td>![Tube]</td>
</tr>
</tbody>
</table>

concentrated and packed

- Hemoglobin
- **RBC**

Systemic circulation - High Pr, High Resis

Pulmonary circulation - Low Pr, Low Resis
Two Important Factors

Fluid Volume
- hyper-volemia
- hypo-volemia
- 42 L

Osmolarity
- hyper-osmolarity
- hypo-osmolarity
- 290 mOsm

Symptoms
- hypertension
- edema
- hypotension
- shock
- swelling of brain cells
- nausea, malaise, headache, confusion, lethargy, seizures, and coma

70 Kg man
Shifts of water between compartments

ICF

2/3 (28L)

ECF

1/3 (14L)

Darrow-Yannet Diagram
Addition of Pure Water

SIADH (ADH↑)
hyposmotic vol expansion
↓ Prot conc.
⇔ HCT

300 mOsm

osmolality

ICF

ECF

volume

0

28

42 L
Shifts of water between compartments

(a) Normal

(b) Add pure water

(c) Add isotonic saline (0.9%NaCl)

(d) Add pure NaCl

0.9% saline IV

isomotic vol expansion

Prot conc.

Hct

BP

Diarrhea

Hemorrhage

Sweating (hypotonic)

Hyperosmotic vol expansion

Prot conc.

Hct

BP

Prot conc.

Hct

BP

BP

BP

SIADH (ADH↑)

Hypomsotic vol expansion

Prot conc.

Hct

BP

Prot conc.

Hct

BP

Prot conc.

Hct

BP

Prot conc.
Fluid balance between ISF and Plasma: Starling's law

Oncotic proteins – albumin, globulin, fibrinogen
Disorders of Fluid Balance

- **Etiology**: liver, cardiovascular or renal disease, hormonal imbalance, or accidents

 - plasma-to-interstitial shift / plasma-to-transcellular space shift

 - Accumulation of fluid in interstices or connective tissues or transcellular spaces due to increased hydrostatic pressure or decreased osmotic pressure (third space)

- **Edema, hydrothorax (pleural effusion), hydropericardium (pericardial effusion), hydroperitoneum (ascites)**

- **Edema**:
 - Increased hydrostatic pressure
 - CHF, liver cirrhosis, constrictive pericarditis, venous obstruction, heat
 - Reduced plasm osmotic pressure
 - nephrotic syndrome, Liver cirrhosis
 - Lymphatic obstruction
 - inflammatory, neoplastic, postsurgical
 - Sodium Retention – pitting edema
 - Excessive salt intake, Increased RAA system
 - Inflammation
Fluid and Electrolyte Balance

- **Water gain**
 - Food and drink: 2.2 L/day
 - Metabolism: 0.3 L/day
 - Glucose + O₂ → CO₂ + H₂O + ATP

- **Water loss**
 - Skin: Insensible water loss 0.9 L/day
 - Lungs: 1.5 L/day
 - Feces: 0.1 L/day

Intake: 2.2 L/day + Metabolic production: 0.3 L/day = Output: (0.9 + 1.5 + 0.1)L/day

Maximum 4L/h
Water Balance

habit (at rest)

Water intake Water output

constant

Thirst (emergency)

Water intake

Osm$_{ICF}$

effective circ. bl vol.

Kidney

Cortex

hypothalamus

renin

baroreceptors in CV sys.

Cell vol. change in ant HT osmoreceptor

ADH

cf. CHF – thirst feeling

Cirrhosis
Thirst: control mechanism for fluid intake

- emergency mechanism
- controlled by hypothalamus
- conscious sensation

Diagram: Thirst Control Mechanism

- **Osmoreceptor cells**
 - High threshold
 - Low threshold

- **Hypothalamus**
 - Supraoptic nucleus
 - Paraventricular nucleus

- **Posterior pituitary**
 - Release of ADH into capillaries

- **Peripheral Volume receptors**

ADH
Regulation of ECF Volume

Effective circ. bl vol.

5-10% change

High pressure baroreceptors
- carotid sinus & body
- aortic arch & body
- juxtaglomerular apparatus (afferent arteriole)

Low pressure baroreceptors
- atrial receptors – ANP
- artium, ventricle, pulmonary vein

Circumventricular organs
- organum vasculosum of the lamina terminalis
- subfornical organ

Hypothalamus
- supraoptic nucleus
- paraventricular nucleus

Osm_{ICF}
Response to decreased blood pressure and volume

\[\downarrow \text{Blood volume} \]
\[\downarrow \text{Blood pressure} \]

Volume receptors in atria and carotid and aortic baroreceptors

trigger homeostatic reflexes

Cardiovascular system

\[\uparrow \text{Cardiac output, vasoconstriction} \]

\[\uparrow \text{Behavior} \]

\[\uparrow \text{Thirst causes water intake} \]

\[\uparrow \text{ECF and ICF volume} \]

Kidneys

\[\uparrow \text{Blood pressure} \]

Conserve H₂O to minimize further volume loss

Volume contraction

\[\uparrow \text{Sympathetic activity} \]

\[\uparrow \text{Renin} \]

\[\uparrow \text{Angiotensin I} \]

Lung

\[\uparrow \text{Angiotensin II} \]

Adrenal gland

\[\downarrow \text{Na⁺, H₂O excretion} \]

\[\uparrow \text{Aldosterone} \]

\[\downarrow \text{ANP and BNP} \]

Heart

Brain

\[\uparrow \text{ADH} \]

\[U_{Na^+} \dot{V} = \downarrow \text{GFR} \times P_{Na^+} + \uparrow R \]
Response to elevated blood pressure and volume

↑ Blood volume → ↑ Blood pressure

Volume receptors in atria, endocrine cells in atria, and carotid and aortic baroreceptors

trigger homeostatic reflexes

Cardiovascular system → ↑ Cardiac output, vasodilation

Kidneys → Excrete salts and H₂O in urine

↓ ECF and ICF volume

↓ Blood pressure

↓ Sympathetic activity

↓ Renin

↓ Angiotensin I

↓ Angiotensin II

↑ Urodilatin

↑ ANP and BNP

Heart

Brain

↓ ADH

↑ Na⁺, H₂O excretion

↓ Angiotensin II

Adrenal gland

↓ Aldosterone

"\[U_{Na}\hat{\nu} = \hat{\upsilon}GFR \times P_{Na} - \downarrow R \]"
Four Regulatory Pathways controlling ECF volume

1. Renin-Angiotensin-Aldosterone Axis
2. Renal Sympathetic activation
3. Arginine Vasopressin (ADH)
4. Arterial Natriuretic Peptide (ANP)
1. Renin-Angiotensin-Aldosterone Axis

- Liver constantly produces Angiotensinogen in the plasma.
- JG cells (kidney) produce Renin, which increases blood pressure and effectively reduces blood volume.
- Blood vessel endothelium (Lung) contains ACE (enzyme) to convert Ang I into Ang II in plasma.
- Ang II in plasma affects arterioles, cardiovascular control center in medulla oblongata, hypothalamus, adrenal cortex, and Na+ reabsorption to maintain blood pressure, volume, and osmolarity.
1. Renin-Angiotensin-Aldosterone Axis

Aldosterone

Diagram:
- **Lumen of distal nephron**
- **P cell of distal nephron**
- **Intersitial fluid**
- **Blood**
- **Aldosterone**
- **Aldosterone receptor**
- **Translation and protein synthesis**
- **K⁺ secreted**
- **Na⁺ reabsorbed**
- **New channels**
- **New pumps**
- **Proteins modulate existing channels and pumps**
- **ATP**
- **K⁺**
- **Na⁺**
2. Renal Sympathetic activation

Enhanced activity of the renal sympathetic nerves

1. increases renal vascular resistance
2. enhances renin release from granule cells
3. increases tubule reabsorption of Na⁺

H₂O and Na⁺ retention
3. Arginine Vasopressin (ADH)

Antidiuretic Hormone (ADH)

Factors to release ADH

1. stretch receptors in heart LA and Pul Vein
2. Pr. in carotid sinus and aortic arch
3. kidney-granular cells – renin - angiotensin II

Vasopressin – high conc of ADH by more than 10% loss of blood volume

- **Raise plasma osmolality → shrink hypothal. osmoreceptors → ADH cells → ADH release**

- **Factors to release ADH**
 1. stretch receptors in heart LA and Pul Vein
 2. PR in carotid sinus and aortic arch
 3. kidney-granular cells – renin - angiotensin II
Control of Secretion of Antidiuretic Hormone (ADH)

- Continuous control of ADH level over the set point (278mOsm) and under the -10% change in circulating blood volume
- Osmolarity and effective circulating blood volume work together and reinforce each other
Cellular mechanisms of ADH action

1. Insertion
2. Expression

AQP2

- Insertion
- Expression
Water Absorption

ADH
Vasopressin present

Diabetes insipidus – ADH deficiency (nephrogenic or neurogenic)
20 L/day urine
Systemic responses to changes in blood osmolarity and volume

- Osmolarity greater than 280 mOsM
 - Hypothalamic osmoreceptors
 - Interneurons to hypothalamus

- Decreased atrial stretch due to low blood volume
 - Atrial stretch receptor
 - Sensory neuron to hypothalamus

- Decreased blood pressure
 - Carotid and aortic baroreceptors
 - Sensory neuron to hypothalamus

- Hypothalamic neurons that synthesize vasopressin
 - Vasopressin (released from posterior pituitary)
 - Collecting duct epithelium
 - Insertion of water pores in apical membrane
 - Increased water reabsorption to conserve water

Key:
- Yellow: Stimulus
- Orange: Receptor
- Yellow: Afferent pathway
- Red: Integrating center
- Purple: Efferent pathway
- Blue: Effector
- Green: Tissue response
- Dark Green: Systemic response
4. Atrial Natriuretic Peptide (ANP)

- ANP - atrium
- BNP - ventricle
- Urodilantin - kidney

Increased blood volume causes increased atrial stretch

Atrial myocardial cells stretch and release

Atrial natriuretic peptide (ANP)

Key:
- Stimulus
- Integrating center
- Efferent pathway
- Effector
- Tissue response
- Systemic response

Hypothalamus

- Inhibits vasopressin

Kidney

- \uparrow GFR
- \downarrow Renin

Adrenal cortex

- Inhibits aldosterone

Medulla oblongata

- Decreases blood pressure

\uparrow NaCl and H2O excretion
Increased renal Na⁺ retention counteracts decreased effective circulating volume.

Feedback Control of Effective Circulating Volume

- Renal baroreceptor → GFR
- Juxtaglomerular apparatus (JGA)
- Renin
- Angiotensin II (ANG II)
- Aldosterone
- Atrial low-pressure receptor
- Pulmonary low-pressure receptor
- Carotid sinus
- Central nervous system
- Atrial myocytes
- Atrial natriuretic peptide (ANP)
- Changes in hemodynamics and tubule transport
- Na⁺ excretion

1. Renin
2. Sympathetic division of ANS
3. Posterior pituitary
4. Atrial natriuretic peptide (ANP)
Na\(^+\) ion

• determines ECF volume

• generates electrical activities

• supplies energy for cellular transport
GFR = 180 L/day, PNa+ = 142 mM
Filtered Load = 25,500 mmole/day (1.5kg)
Diet 120 mmole/day

Na+ Transport

67% Na cotransporter
Na/H exchanger
Solvent drag

100 Na-Cl transporter

5% Na channels

8 Na/K/2Cl transporter paracellular

33 cortex medulla

3% ADH

25% Na channels

3 % Urine = 1.5 L/day
Filtered = 100 mmole/day

Transcellular pathway
Paracellular pathway
Regulation of Na+ Transport

1. **Glomerulotubular balance**
2. **Aldosterone**
3. **Sympathetic nerves**
 1. Decrease RBF & GFR
 2. Release renin
 3. Stimulate tubular Na+ reabsorption (activates NHE3 & Na pump)
4. **Arginine vasopression – ADH**
5. **Atrial Natriuertic Hormone**
 1. Increase RBF & GFR
 2. Inhibit Na reabsorption in the medulla
6. **PG, bradykinin, & dopamine inhibit Na+ reabsorption**
Sodium Balance

INPUT
- Sodium in diet: 100 - 300 mEq/day

OUTPUT
- Extracellular fluid
 - Skin (sweat, burns, hemorrhage)
 - Gastrointestinal losses (diarrhea, vomiting)
 - Kidneys

- Positive Na⁺ balance → ECF vol.↑ → generalized edema

High intake → hypertension
Renal Responses to Na\(^+\) intake

water intake \rightarrow ECF \uparrow \rightarrow Wt gain

Higher Na\(^+\) intake \rightarrow pos. sodium balance \rightarrow increase excretion \rightarrow restore equal balance

(Walser, 1985, Kidney Int)
• **Hypernatremia** > 148 mEq/L
 - hyperaldosteronism, sweating burns, diabetes insipidus, diarrhea
• **Hyponatremia** < 135 mEq/L
 - diuretics, hypoaldosteronism
 - SIADH, CHF, RF
Kidney Failure

Uremia (urine in blood)

- Lack of erythropoietin → anemia
- Plasma urea creatinine and uric acid → azotemia
- Lack of vitamin D activation → bone disease
- Increased ECF → hypertension
- Decreased H⁺ secretion → metabolic acidosis
- Decreased GFR → hyperkalemia

ERDS: End State Renal Disease, GFR <10% of Normal
Hemodialysis: pump blood through dialyzer; more efficient than peritoneal dialysis